
1

Processor Architecture
Past

Present
Future

Steve Wallach
swallach”at”conveycomputer.com

swallach - Nov 2008 - SEG 2

Discussion

• What has happened in the
past
– Instruction Set Architecture
– Logical Address Space
– Compilers
– What technology survived

• What should happen in the
future
– Is it time for a

transformation?
– Is it time for heterogeneous

computing?

2

swallach - Nov 2008 - SEG 3

History

• 1960’s, 1970’s, 1980’s, 1990’s, 2000 & Today

“Those who can not remember the past are condemned
to repeat it”

George Santayana, 1905

swallach - Nov 2008 - SEG 4

Way Back When – 1960’s
• Commercial – IBM 1401 (1960’s)

– Character Oriented
• Technical – IBM 7040/7090 (1960’s)

– Technical
• Word oriented
• Floating Point (FAP)

• 1966 – IBM 360
– One integrated commercial and technical instruction set
– Byte addressability
– Milestone architecture

• Family of compatible systems
• 1966 – CDC – Technical Computing

– Word Oriented

3

swallach - Nov 2008 - SEG 5

Address Space/Compilers - 1960

• Mapped Physical
– 12 to 24 bits

• Project MAC
(Multics)
– Virtual Memory
– Process Encapsulation

• Fortran Compilers
begin appearing
– Can you really write an

application in a higher level
language?

swallach - Nov 2008 - SEG 6

1970’s
• The decade of the minicomputer & language directed design

– APL Machines
– ALGOL Machines (Burroughs 5500/6500))
– Complex ISA (e.g., VAX) (Single Instruction per Language Statement)

• Co processor
– Floating Point – (Data General and DEC)

• Microcoded and Hardwired
– String and Byte instructions
– Writable Control store for special apps

• B1700
– S-language instruction set
– Different ISA for Fortran, Cobol, RPG, etc

• Cray – 1 – Vector Processing for Technical Market
– TI ASC
– CDC STAR

• Array Processors to accelerate minicomputers (primarily)
– FPS 120b/264
– IBM 3838
– CDC MAP

4

swallach - Nov 2008 - SEG 7

Address Space/Compilers - 1970
• Movement from 16 to 32 bits
• Multics Trickles Down (Intellectually) to Massachusetts Companies

– DEC (VAX)
– DG (MV)
– Prime

• Rethinking the Address Space Model
– Object Based, System-Wide & Persistent Address Space

• IBM Future System (FS)
• Data General Fountainhead (FHP)
• INTEL I432

• Compilers begin to perform optimizations
– Local & Beginnings of Global
– Beginnings of dependency analysis for Vector Machines

• Hardware prompts compiler optimizations

swallach - Nov 2008 - SEG 8

1970’s
• We begin to see specialized processors and

Instruction sets tuned to particular applications
• Unix emerges

– Singular MULTICS
• Array processors used for signal/image processing

– 2 compilers needed
– “vertical programming”

• System Definitions:
– Mainframe - West of the Hudson River
– Minicomputer - East of the Hudson River

5

swallach - Nov 2008 - SEG 9

1970’s What we learnt

• Hardware makes user application software easier to
develop
– Virtual Memory
– Large Physical Memory
– Application accelerators were commercially viable

• Signal/image processing
• Writable Control Store (Microprogramming)

• Compiler and OS Technology moving to take advantage of
hardware technology
– Dependency Analysis (vectors)

• University of Illinois
– Process Multiplexing and multi-user

swallach - Nov 2008 - SEG 10

1980’s
• Vector and Parallel Processors for the

masses
– Vector and Parallel Instruction sets

• Convex and Alliant
– Virtual Memory
– Integrated scalar and vector instructions

• Beginnings of the “killer micro” (RISC)
– MIPS, SPARC, PA-RISC, PowerPC

• VLIW Instructions
– Instruction Level Parallelism

(superscalar)
• MultiFlow

• Unique designs for unique apps
– Systolic
– Dataflow
– Database
– ADA Machine (from Rational)
– LISP Machine from Symbolics
– DSP

6

swallach - Nov 2008 - SEG 11

Address Space/Compilers – 1980’s

• Systems generally 32 bit virtual (or mapped)
– More Physical Memory
– Better TLB designs
– What is the size of INT? (Unix issue)
– Big or Little Endian

• Compilers perform global optimization for Fortran
and C
– Automatic Parallelization

• University of Illinois & Rice

swallach - Nov 2008 - SEG 12

1980’s
• Portability of Unix and Venture Capital

– New Machine Architectures
– Beginning of Open Source Movement

• LAPACK

• Scalar Instructions form basis of all new architectures
• Moore’s Law HELPS to create new architectures
• Array Processors disappear

– Integrated Systems easier to program
– Dual licenses for certain apps

• Host and attached processor

7

swallach - Nov 2008 - SEG 13

1980’s What we learnt

• Parallel machines are easy to build but harder to program
• Rethink applications
• New languages (i.e., C & C++) get used and accepted

because users like to use them and NOT due to an edict
(i.e., ADA)

• Compilers and OS move to parallel machines
• Startups provide the innovative technology
• Hardware makes user application software easier to

develop

swallach - Nov 2008 - SEG 14

1990’s
• Microprocessor microarchitecture evolves

– Moores Law and Millions of Transistors drive increase in complexity
• Multi-threading
• SuperScalar

• ILP
– Itanium (multiple RISC instructions in one WORD”

• ISA extensions for imaging
– PA-RISC
– x86 SSE1

• Beginning to use other technologies
– GPU’s
– FPGA’s
– Game Chips

8

swallach - Nov 2008 - SEG 15

Address Space/Compilers - 1990

• Micro’s move to a 64 bit Virtual Address
• System-Wide cache coherent interconnects

– SCI
• Distributed Physical Memory

– Shared Nothing
– Shared Everything

• Compilers address
– Distributed Memory

• UPC
– InterProcedural Analysis

• Rice University

swallach - Nov 2008 - SEG 16

1990’s
• Micro’s Take Over

– Cost of Fabs
• Moore’s Law INHIBITS new architectures

– Cost of development escalates
– Table stakes approach Billion Dollars

– PC’s begin to dominate desktop
– ILP vs. Multi-Core

• Will ILP help uniprocessor performance?
• Cache blocking algorithms

9

swallach - Nov 2008 - SEG 17

1990’s What we learnt

• Cost of semi-conductor Fabs and design of custom logic
determine the dominant architectures
– Need the volume to justify the cost of a Fab
– Thus the beginning of the x86 Hegemony

• The most significant software technology is OPEN
SOURCE
– Linux begins to evolve

• There is no such thing as too much main memory or too
much disk storage

• Compilers, with the proper machine state model, can
produce optimized performance within a standard language
structure

swallach - Nov 2008 - SEG 18

2000 & now
• Multi-Core Evolves

– Many Core
– ILP fizzles

• x86 extended with sse2, sse3, and
sse4

– -application specific enhancements
• Basically performance

enhancements by
– On chip parallel
– Instructions for specific

application acceleration
• Déjà vu – all over again – 1980’s

– Need more performance than
micro

– GPU, CELL, and FPGA’s
• Different software environment

Yogi Berra

10

swallach - Nov 2008 - SEG 19

2000 Technology
• Moore’s Law provides billions

of transistors but clock speed
static

– Power ~ C*(V**2)*T +
Leakage Power

• Main Memory technology not
tracking cpu performance

– Memory Wall
– Cache Hierarchies

• Most significant software
technology is the OPEN
SOURCE movement

– Easier to develop software
using existing applications as a
base.

– OS and Compiler
– Cluster aware frameworks

swallach - Nov 2008 - SEG 20

2000 Power Considerations

11

swallach - Nov 2008 - SEG 21

2000 Design Technology
• New Arch ~ 2-3X die area of

the last Arch
but only Provides 1.5-1.7X
integer performance of the
last Arch
– The Wrong Side of a

Square Law
• Key Challenges for future

Micro architectures
– SIMD ISA extensions
– Special Purpose

Performance
– Increased execution

performance

Pollack Keynote Micro-32
Dally, ISAT Study – Aug 2001

swallach - Nov 2008 - SEG 22

The road to performance

IBM, CDC
• One integrated

commercial and
technical
instruction set

• Word-oriented
technical
computing

1960’s

1970’s

1980’s

1990’s

2000’s

Minicomputers
Begin to see
specialized processors

Minisupercomputers
Scalar instructions
form base

DG, DEC
• Floating point

coprocessor
Cray-1
• Vector

processing
FPS
• Attached array

processors

Convex/others
• Vector/parallel

for the masses
RISC Processors
• Beginning of

“killer micro”
Some unique
designs for unique
applications

RISC
evolves/Moore’s
Law
• Multi-threading
• Superscalar
• VLIW
Vector/MPP
• Much more

specialized

Multi-core evolves
x86 extended with
SSE
• Application-

specific
enhancements

Lots of interest in
• GPGPU, CELL,

FPGAs

Using Moore’s Law
But: mainstream is still
microprocessors

Application-specific
How to get performance
from 40-year old von
Neumann architecture

Rev 9/22/08 22 Convey Confidential

12

swallach - Nov 2008 - SEG 23

The standard desktop/server
environment

• 64 bit virtual address space
• Multi-Core
• Cache coherent cores
• Gigabytes of ECC protected physical memory
• x86 Instruction Set
• Compilers

– ANSI Fortran, C, and C++
– Automatic Vectorizing and Parallelizing
– One compiler used for application development

• One a.out (.exe) file
• I/O directly into application memory

swallach - Nov 2008 - SEG 24

What Next?
• Extend standard x86 architecture for application

specific environments
– Use the x86 as the canonical ISA (base level)
– Implement cache coherency and share the same virtual

and physical address space (QPI, HT)
• Facilitates compiler global optimization
• Permits more innovative physical memory design

• Provide compiler support and also provide time to
market solutions

• Incremental hardware makes it easier to program
– Consistent with the last 40 years

13

swallach - Nov 2008 - SEG 25

Basis of Discussion

swallach - Nov 2008 - SEG 26

Asymmetric Processor
• Now is the time to refocus on uniprocessor performance

– ILP does not deliver
– Multi-Core does not help uniprocessor performance

• Serial Instruction sets and Cache Block Based Memory systems form the base
level

– Have to figure out how to deal with sparse datasets
• High Level Uniprocessor Semantics rather then ILP is needed

– Use the transistors to build specific application functional units
• Machine state appropriate to the computation

• One compiler generating both x86 and asymmetric instructions
• Highly interleaved Memory system optimized for:

– Vector like memory access
– Non-unity strides
– Hashed Memory Lookups

14

swallach - Nov 2008 - SEG 27

VECTOR

(64 Bit -F
loat)

Finite Element

Asymmetric Processor - ISA

VECTOR(32 Bit -Float)Signal/Imaging

Bit/Logical

Data Mining
Sorting/TreeTraversal

Systolic
Bio-Informatics

Finance

(Float)

X86 ISA

swallach - Nov 2008 - SEG 28

Asymmetric Processor - Compiler
• One Unified Compiler

– x86 code generator
– Multiple code generators for asymmetric processor ISA

• Each extension presents a different machine state model
– Benefits

• Programmer Productivity Enhanced
• Global Optimizations includes both the x86 core and asymmetric ISA
• One compiler, as contrasted compiler for x86 and compiler for

accelerator
• The past 40 years has taught us that ultimately the system

that is easier to program will always win
– Cost of ownership
– Cost of development

15

swallach - Nov 2008 - SEG 29

The Convey Hybrid-Core
Computer

• Extends x86 ISA with
performance of a
hardware-based
architecture

• Adapts to application
workloads

• Programmed in ANSI
standard C/C++ and
Fortran

• Leverages x86
ecosystem

swallach - Nov 2008 - SEG 30

Hybrid-Core Computing

Cache-coherent shared virtual memory

Application

x86_64
instructions

coprocessor
instructions

16

swallach - Nov 2008 - SEG 31

Convey System Architecture

Intel
chipset

Intel
Processor

Coprocessor

PCIe

4 DIMM
channels

16 DIMM channels (80GB/sec)
ECC memory

coherent memory controllercoherent memory controller

host
inter
face

host
inter
face

Application EnginesApplication Engines

dynamically loadable personalities
deliver application specific

performance

Shared physical and virtual memory provides
coherent programming model

Intel x86_64
Linux ecosystem

swallach - Nov 2008 - SEG 32

Inside the Coprocessor

crossbar

m
em

or
y

co
nt

ro
lle

r

Sc
al

ar

Pr
oc

es
si

ng

In
st

ru
ct

io
n

Fe
tc

h/
D

ec
od

e

H
os

t I
nt

er
fa

ce

m
em

or
y

co
nt

ro
lle

r

m
em

or
y

co
nt

ro
lle

r

m
em

or
y

co
nt

ro
lle

r

m
em

or
y

co
nt

ro
lle

r

m
em

or
y

co
nt

ro
lle

r

m
em

or
y

co
nt

ro
lle

r

m
em

or
y

co
nt

ro
lle

r

com
m

on for all personalities

Application Engines

personalities loaded into AEs implement
application specific instructions

16 DDR2 memory channels
Standard or Scatter-Gather DIMMs

80GB/sec throughput

system
interface and

memory
management
implemented

by coprocessor
infrastructure

direct I/O
 interface

17

swallach - Nov 2008 - SEG 33

Development Tools

• Program in ANSI
standard C/C++ and
Fortran

• Unified compiler
generates x86 &
coprocessor instructions

• Seamless debugging
environment for Intel &
coprocessor code

• Executable can run on
x86_64 nodes or on
Convey Hybrid-Core
nodes

executable

C/C++ Fortran95

Common OptimizerCommon Optimizer

Intel® 64
Optimizer
& Code

Generator

Intel® 64
Optimizer
& Code

Generator

Convey
Vectorizer&

Code
Generator

Convey
Vectorizer&

Code
Generator

Procedural
Personality
Interface

Procedural
Personality
Interface

LinkerLinker

other
objects

swallach - Nov 2008 - SEG 34

What Next

• Is it time to go the next step in the address space?
– 128 bit persistent

• Network-Wide address space
– IPv6

– Use Moore’s Law to make it easier to manage and access the
world’s data (not just local data)

– TAKE SECURITY SERIOUSLY
• 30 years ago workable security models were developed

• Compilers address hybrid distributed memory
– PGAS
– Cache coherent within SOCKET
– Cache coherent (or not) external to socket
– Augment/Replace MPI

18

swallach - Nov 2008 - SEG 35

And of Course Performance

